Sharp Bounds for the Second-Order General Connectivity Index of Hexagonal Chains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new bounds on the general sum--connectivity index

Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...

متن کامل

Bounds for the general sum-connectivity index of composite graphs

The general sum-connectivity index is a molecular descriptor defined as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text], and α is a real number. Let X be a graph; then let [Formula: see text] be the graph obtained from X by adding a new vertex [Formula: see text] corresponding to each edge of X and joining [Formula: see text] to the end vertices...

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

A note on the zeroth-order general randić index of cacti and polyomino chains

The present note is devoted to establish some extremal results for the zeroth-order general Randi'{c} index of cacti, characterize the extremal polyomino chains with respect to the aforementioned index, and hence to generalize two already reported results.

متن کامل

Some Bounds on General Sum Connectivity Index

function f: G  , with this property that f(G1) = f(G2) if G1 and G2 are isomorphic. There are several vertex distance-based and degree-based indices which introduced to analyze the chemical properties of molecule graph. For instance: Wiener index, PI index, Szeged index, geometric-arithmetic index, atom-bond connectivity index and general sum connectivity index are introduced to test the perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2018

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2018/7506541